倉敷市環境監視センター

1 調査目的

本調査は、大気環境中における微小粒子状物質(以下「PM2.5」という。)を捕集し、質量濃度 及び成分分析を行い、環境中の PM2.5 の実態を把握することを目的とする。

2 調査地点

松江局(松江3丁目11-26)

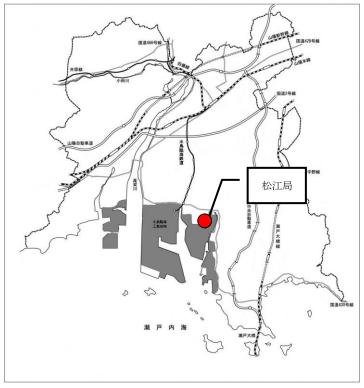


図1 調査地点

3 調査項目及び分析方法

表1 調査項目

	項目	分析方法			
質量	質量濃度	重量法			
ノナンボハ	Na^{+} , NH_{4}^{+} , K^{+} , Mg^{2+} , Ca^{2+} , $C1^{-}$, NO_{3}^{-} , SO_{4}^{2-}	水抽出-イオンクロマト			
イオン成分	Na Nn4 N Mg Ca CI NO3 SO4	グラフ法			
	有機炭素 (OC1、OC2、OC3、OC4)	サーマルオプティカル・			
炭素成分	元素状炭素(EC1、EC2、EC3)	リフレクタンス法			
	炭素補正値(OCpyro)				
	Na、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、	無機元素の多元素同時			
無機元素成分	Cu、Zn、As、Se、Rb、Mo、Sb、Cs、Ba、La、Ce、Sm、	測定法(酸分解/ICP-MS)			
	Hf、W、Ta、Th、Pb				

4 採取

(1) 採取方法

「大気中微小粒子状物質 (PM2.5) 成分測定マニュアル」(以下「成分測定マニュアル」という。) の捕集法に準ずる。

(2) 頻度

年4回(春季、夏季、秋季、冬季) 各調査時期に連続14日間の採取を実施。

5 調査結果

(1)調査期間の気象

表 2(1) 調査期間中の気象データ

	4X Δ (1) [NH_EL.79] [F] 「																					
	サンプリング実施時期											気象条件										
季節		年	月	日	時	分	~		年	月	日	時	分	主風向	風速(m/s)	気温(°C)	湿度(%)	雨量(mm)	気圧(hPa)	日射量 (MJ/m²)		
春	西曆	2023	5	11	10	0	~	西曆	2023	5	12	9	0	NE	1.5	20.1	36		1019.3	26.7		
春	西腊	2023	5	12	10	0	~	西曆	2023	5	13	9	0	NE	1.5	20.8	47		1018.0	23.6		
春	西曆	2023	5	13	10	0	~	西曆	2023	5	14	9	0	NE	1.3	16.6	85	19.5	1014.2	5.0		
春	西腊	2023	5	14	10	0	~	西曆	2023	5	15	9	0	NE	1.4	19.5	77		1009.4	16.0		
春	西曆	2023	5	15	10	0	~	西曆	2023	5	16	9	0	С	1.0	19.9	74		1011.5	16.9		
春	西曆	2023	5	16	10	0	~	西曆	2023	5	17	9	0	С	1.3	22.6	61		1014.3	25.7		
春	西曆	2023	5	17	10	0	~	西曆	2023	5	18	9	0	SSW	1.3	24.0	57		1015.4	24.0		
春	西曆	2023	5	18	10	0	~	西曆	2023	5	19	9	0	NE	1.5	21.2	75	16.5	1011.3	12.0		
春	西曆	2023	5	19	10	0	~	西曆	2023	5	20	9	0	С	0.9	19.0	87	13.5	1007.2	6.6		
春	西曆	2023	5	20	10	0	~	西曆	2023	5	21	9	0	N	1.0	20.7	73		1009.8	13.0		
春	西曆	2023	5	21	10	0	~	西曆	2023	5	22	9	0	С	1.2	23.1	65		1007.4	25.6		
春	西曆	2023	5	22	10	0	~	西曆	2023	5	23	9	0	NE	1.6	21.0	71	1.0	1005.4	18.5		
春	西曆	2023	5	23	10	0	~	西曆	2023	5	24	9	0	NNE	1.9	19.4	49		1009.4	21.3		
春	西曆	2023	5	24	10	0	~	西曆	2023	5	25	9	0	NE	1.5	20.5	47		1016.4	24.5		
夏	西曆	2023	7	20	10	0	~	西曆	2023	7	21	9	0	NNE	1.5	28.3	64		1009.6	19.5		
夏	西曆	2023	7	21	10	0	~	西曆	2023	7	22	9	0	NE	1.5	29.9	59		1014.3	26.8		
夏	西曆	2023	7	22	10	0	~	西曆	2023	7	23	9	0	NE	1.4	30.4	68		1015.6	24.0		
夏	西曆	2023	7	23	10	0	~	西曆	2023	7	24	9	0	NE	1.3	30.2	69		1013.3	20.3		
夏	西曆	2023	7	24	10	0	~	西曆	2023	7	25	9	0	NE	1.1	30.5	70		1013.9	11.8		
夏	西曆	2023	7	25	10	0	~	西曆	2023	7	26	9	0	SW	1.6	30.6	67		1016.1	24.7		
夏	西曆	2023	7	26	10	0	~	西曆	2023	7	27	9	0	SSW	1.2	31.7	62		1015.5	26.3		
夏	西曆	2023	7	27	10	0	~	西曆	2023	7	28	9	0	NE	1.3	32.0	63		1014.7	24.0		
夏	西曆	2023	7	28	10	0	~	西曆	2023	7	29	9	0	NE	1.7	32.2	63		1014.8	25.1		
夏	西曆	2023	7	29	10	0	~	西曆	2023	7	30	9	0	NE	1.6	31.3	62		1015.8	26.2		
夏	西曆	2023	7	30	10	0	~	西曆	2023	7	31	9	0	NE	1.3	31.0	65		1014.7	17.0		
夏	西曆	2023	7	31	10	0	~	西曆	2023	8	1	9	0	NE	1.2	30.6	68		1012.8	14.7		
夏	西曆	2023	8	1	10	0	~	西曆	2023	8	2	9	0	NE	1.4	31.6	65		1011.2	21.4		
夏	西曆	2023	8	2	10	0	~	西曆	2023	8	3	9	0	NE	1.3	32.0	64		1009.4	21.2		
秋	西曆	2023	10	19	10	0	~	西曆	2023	10	20	9	0	SW	1.2	21.7	67		1014.5	14.6		
秋	西曆	2023	10	20	10	0	~	西曆	2023	10	21	9	0	NNW	1.2	16.5	67	5.5	1012.4	4.2		
秋	西曆	2023	10	21	10	0	~	西曆	2023	10	22	9	0	NNE	2.0	16.2	49		1020.1	14.2		
秋	西曆	2023	10	22	10	0	~	西曆	2023	10	23	9	0	N	1.4	17.8	60		1022.8	15.8		
秋	西曆	2023	10	23	10	0	~	西曆	2023	10	24	9	0	N	1.4	18.9	60		1021.9	15.6		
秋	西曆	2023	10	24	10	0	~	西曆	2023	10	25	9	0	N	0.8	19.6	66		1018.3	12.8		
秋	西曆	2023	10	25	10	0	~	西曆	2023	10	26	9	0	NNE	1.2	18.9	64		1016.2	15.0		
秋	西曆	2023	10	26	10	0	~	西曆	2023	10	27	9	0	N	1.2	19.0	62		1013.4	14.4		
秋	西曆	2023	10	27	10	0	~	西曆	2023	10	28	9	0	NNE	1.0	16.0	79	5.0	1012.0	9.6		
秋	西曆	2023	10	28	10	0	~	西曆	2023	10	29	9	0	С	1.2	16.3	60		1017.1	12.7		
秋	西曆	2023	10	29	10	0	~	西曆	2023	10	30	9	0	N	1.3	15.5	63		1021.0	14.3		
秋	西曆	2023	10	30	10	0	~	西曆	2023	10	31	9	0	NNE	1.3	16.9	59		1022.4	14.7		
秋	西曆	2023	10	31	10	0	~	西曆	2023	11	1	9	0	N	1.0	16.8	65		1022.1	11.0		
秋	西曆	2023	11	1	10	0	~	西曆	2023	11	2	9	0	N	1.2	18.5	69		1020.5	13.9		

表 2(2) 調査期間中の気象データ

冬	西暦	2024	1	18	10	0	~	西暦	2024	1	19	9	0	NNE	1.0	10.0	78	1.0	1022.5	3.5
冬	西暦	2024	1	19	10	0	~	西暦	2024	1	20	9	0	NE	1.6	9.7	64		1025.8	3.6
冬	西暦	2024	1	20	10	0	~	西厝	2024	1	21	9	0	NNE	1.3	9.7	87	7.5	1017.5	3.4
冬	西暦	2024	1	21	10	0	~	西厝	2024	1	22	9	0	N	1.4	8.8	70		1019.3	9.6
冬	西暦	2024	1	22	10	0	~	西厝	2024	1	23	9	0	NNW	2.4	6.9	55		1017.5	8.6
冬	西暦	2024	1	23	10	0	~	西厝	2024	1	24	9	0	WNW	2.8	1.5	54		1015.2	8.7
冬	西暦	2024	1	24	10	0	~	西暦	2024	1	25	9	0	W	2.5	0.9	57		1019.2	12.2
冬	西暦	2024	1	25	10	0	~	西暦	2024	1	26	9	0	WNW	2.2	3.7	57		1023.3	11.3
冬	西暦	2024	1	26	10	0	~	西厝	2024	1	27	9	0	NNW	1.1	5.5	58		1024.8	6.6
冬	西暦	2024	1	27	10	0	~	西暦	2024	1	28	9	0	W	1.2	6.9	56		1023.4	10.0
冬	西暦	2024	1	28	10	0	~	西厝	2024	1	29	9	0	N	1.1	5.7	66		1026.4	6.9
冬	西暦	2024	1	29	10	0	~	西暦	2024	1	30	9	0	N	1.0	6.2	64		1029.5	9.1
冬	西暦	2024	1	30	10	0	~	西暦	2024	1	31	9	0	NNE	1.4	7.6	60		1027.9	10.3
冬	西暦	2024	1	31	10	0	~	西暦	2024	2	1	9	0	NE	1.0	9.4	85	5.0	1021.5	4.5

風速、気温及び湿度は、調査期間中の1時間値の平均値を示した。雨量は、調査期間中の合計量を示した。

また、図2に松江局の風配図を示す。

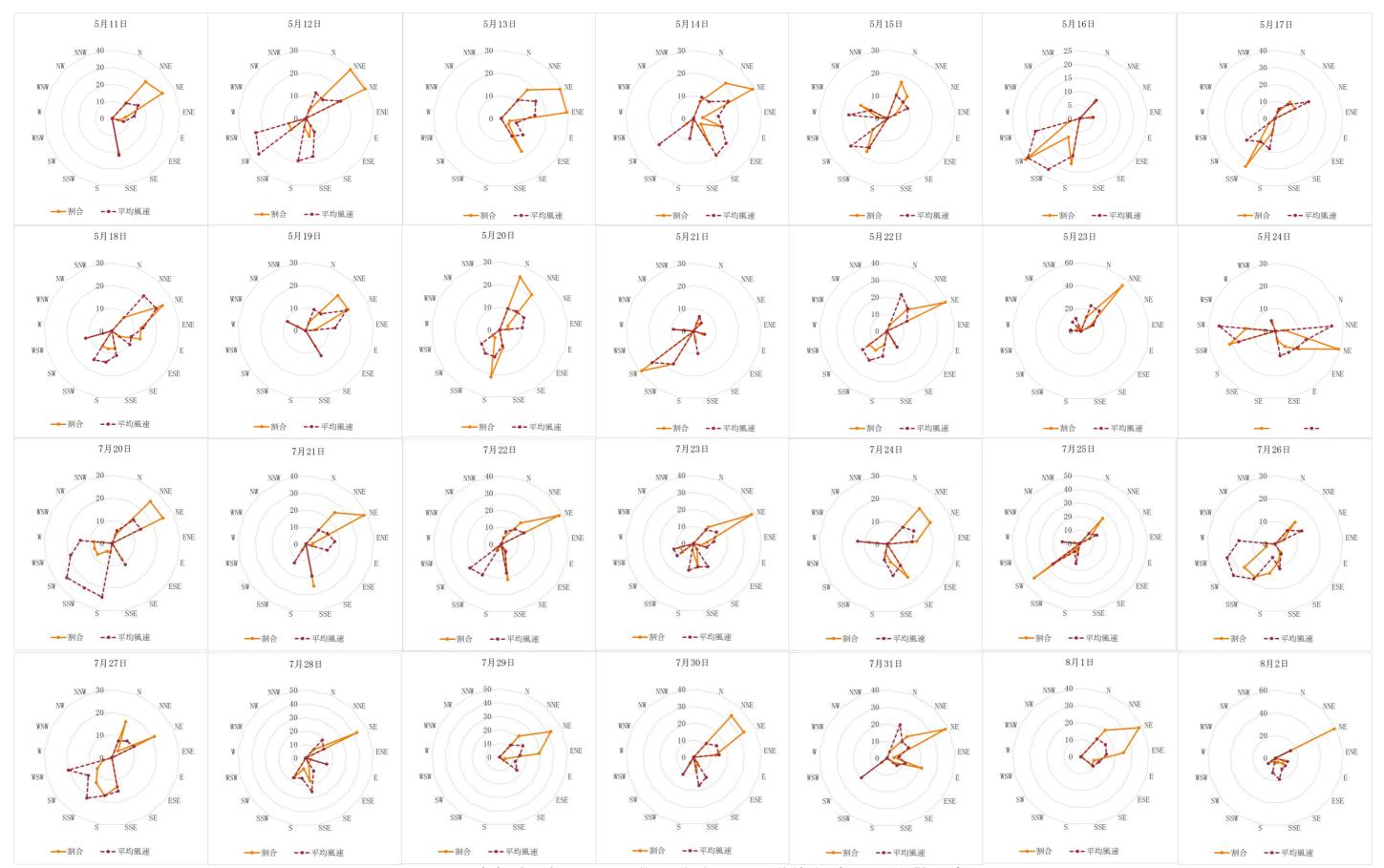


図2(1) 各調査日の風配図(松江局)(風配図には静穏(風速 0.5m/s 未満)を含む。

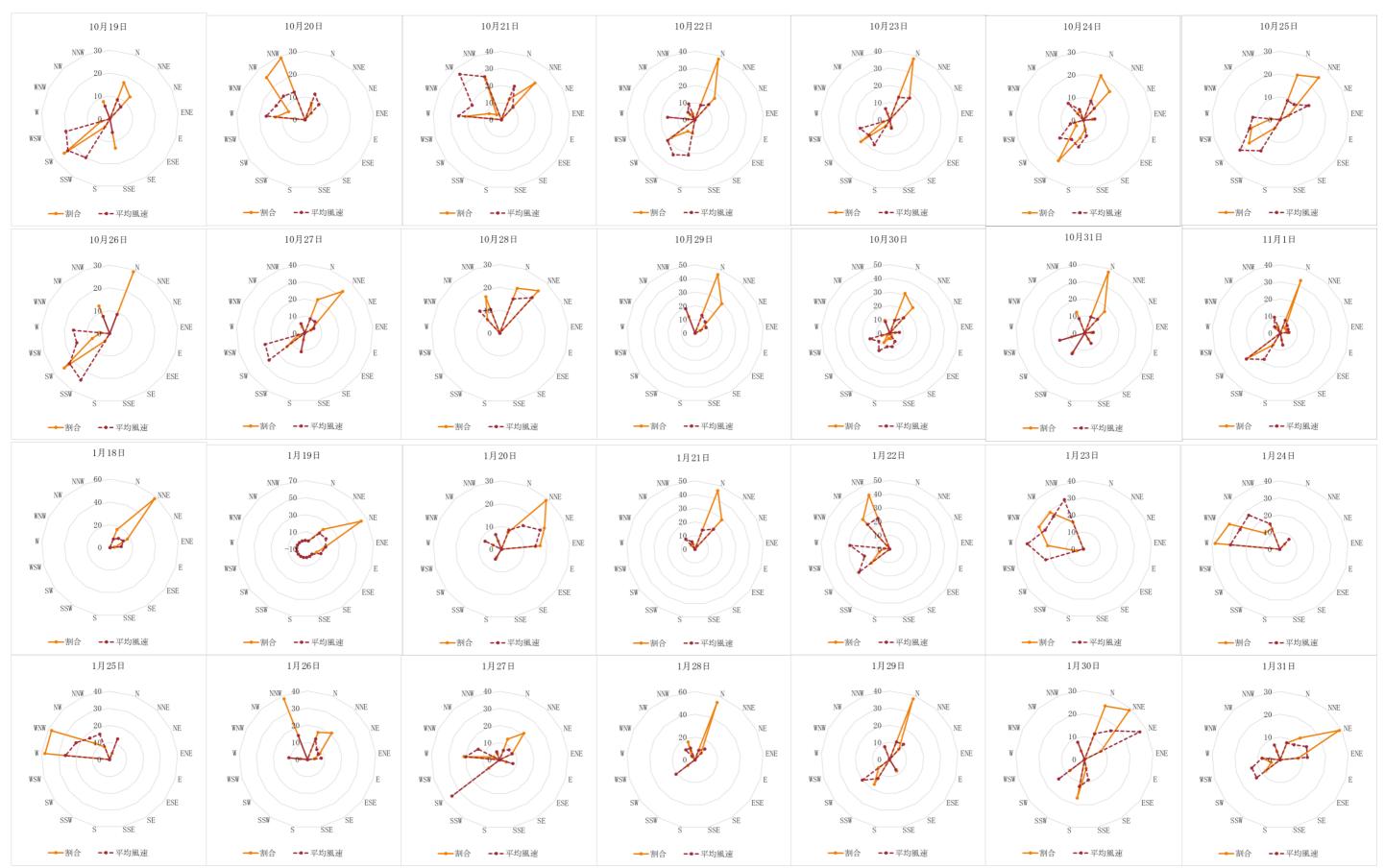


図2(2) 各調査日の風配図(松江局)(風配図には静穏(風速0.5m/s未満)を含む。)

(2) 質量濃度

質量濃度の測定結果は、図3-1及び図3-2に示すとおりである。

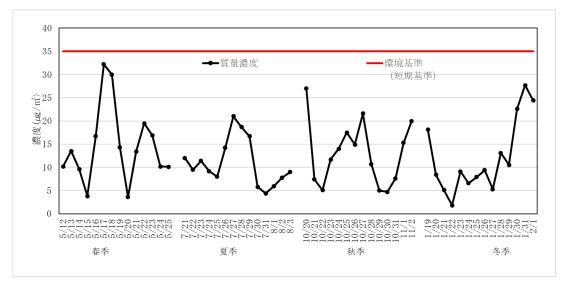


図3-1 質量濃度測定結果

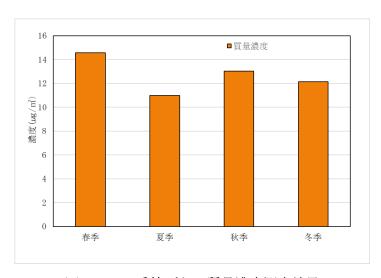


図3-2 季節ごとの質量濃度測定結果

測定日ごとの日平均値は、 $1.8\sim32.2\,\mu\,\mathrm{g/m^3}$ の範囲であり、全ての調査期間において、環境基準を満足していた。

各季の平均値は、 $11.0\sim14.6\,\mu\,\mathrm{g/m^3}$ の範囲であり、四季を通じてみると、春季の平均値が最も高かった。なお、年間の平均値は、 $12.7\,\mu\,\mathrm{g/m^3}$ であり、環境基準値(長期基準: $15\,\mu\,\mathrm{g/m^3}$)未満であった。

(3) 質量濃度に対するイオン成分、無機元素成分及び炭素成分の組成割合

質量濃度に対する各成分の濃度及び割合は、図4-1及び図4-2に示すとおりである。なお、無機元素成分のうち、ナトリウム、カリウム及びカルシウムは、イオン成分と重複するため、グラフからは除いている。

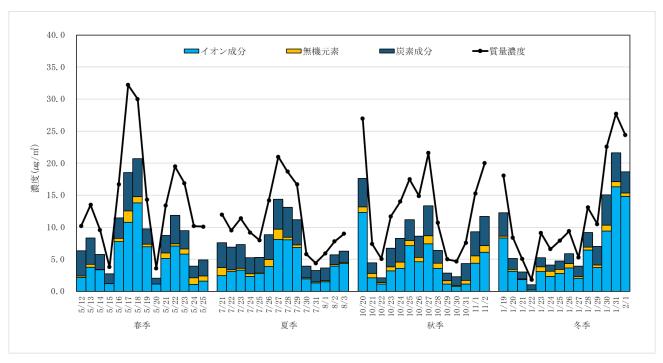


図4-1 質量濃度に対する各成分の濃度

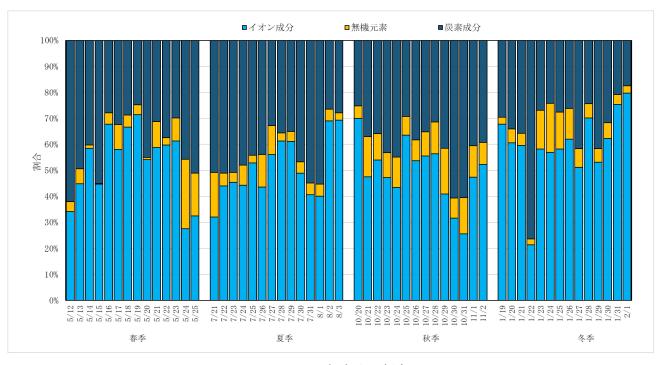


図4-2 各成分の割合

質量濃度に対する各成分のうち、春季、秋季及び冬季でイオン成分の割合が最も高く、夏季では炭素成分の割合が最も高くなった。夏季は塩素イオンやカリウムイオン量が少なかった。これは、成分測定マニュアルに記載されている発生源の指標となる成分の表によると、該当地域での廃棄物の焼却が少なかったことを示唆する結果である。

(4) イオン成分

イオン成分濃度の測定結果は、図5-1から図5-4に示すとおりである。なお、図5-1には、質量濃度との変動を比較するために、当該結果を参考として再掲している。



図5-1(1) イオン成分濃度測定結果



図5-1(2) イオン成分濃度測定結果

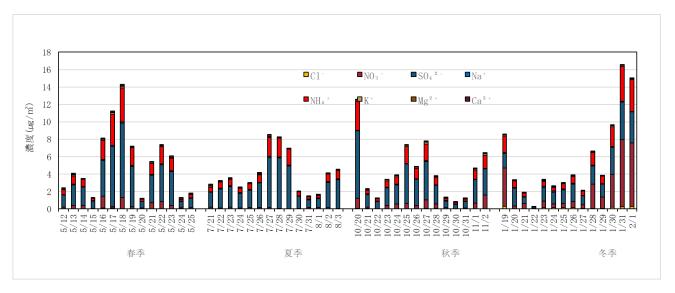


図5-2 イオン成分濃度測定結果(全体濃度)

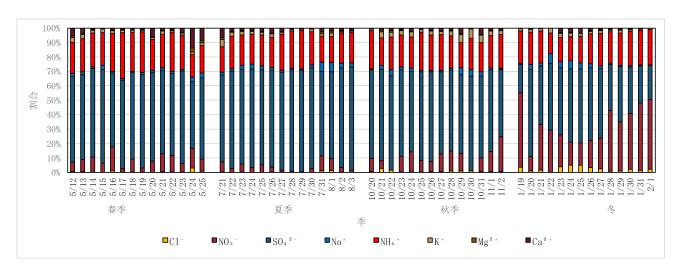


図5-3 イオン成分濃度の割合

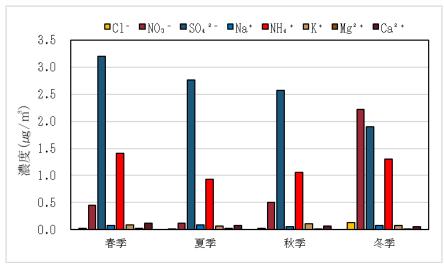


図5-4 季節ごとのイオン成分濃度測定結果

イオン成分は硫酸イオン、硝酸イオン及びアンモニウムイオンが高い割合を示し、四季を通じて質量濃度の変動と同様に推移した。

季節ごとの変化を見ると、硫酸イオンは、冬季以外の季節では最も割合が高く、全体の20%~72%を占めていた。また、アンモニウムイオンは、四季を通じて割合があまり変わらず、22%~32%で推移していた。硝酸イオンについては、夏季0.5%~冬季52%と大きな差があった。硝酸イオンは自動車排ガス等で排出された窒素酸化物が大気中での光化学反応や降雨への溶解により、硝酸を形成し、大気中のアンモニアと反応することにより、硝酸アンモニウム塩を形成するといわれている。硝酸アンモニウムは微小粒子として長期間滞留するが、夏季等の高温下では生成されにくく、ガス状の硝酸及びアンモニアの存在割合が大きくなり、発生源からあまり輸送されずに沈着する可能性が高いため、夏季に低濃度であったと考えられる。

(5) 炭素成分

炭素成分の測定結果は、図6-1から図6-4に示すとおりである。なお、図6-1には、質量濃度との変動を比較するために、当該結果を参考として再掲している。

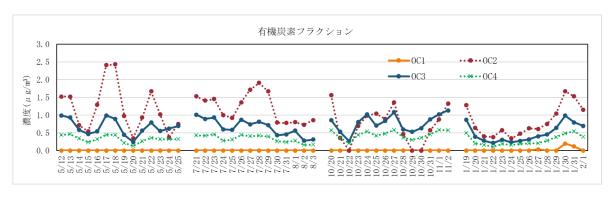
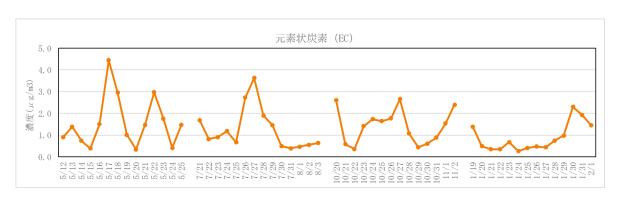



図6-1(1) 炭素成分濃度測定結果

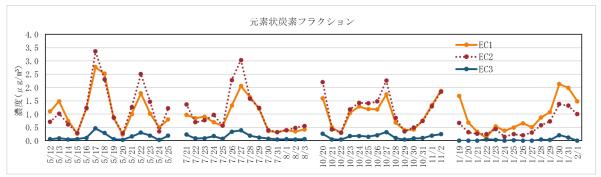


図6-1(2) 炭素成分濃度測定結果

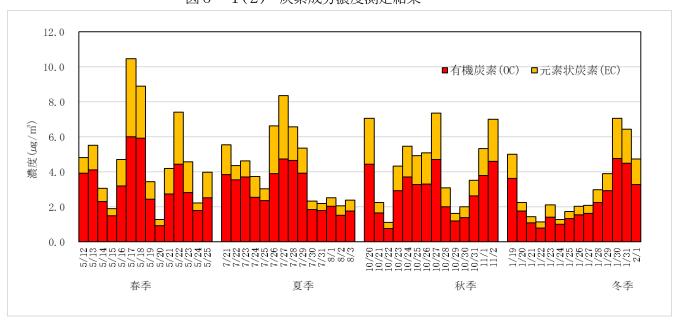


図6-2 炭素成分濃度測定結果(全体濃度)

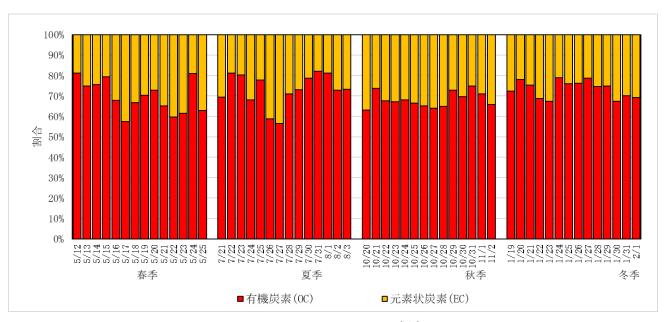
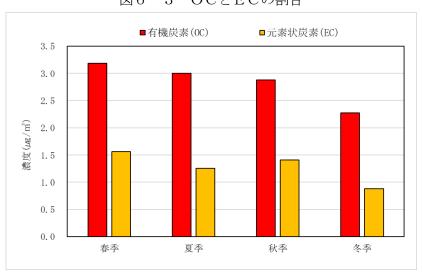



図6-3 OCとECの割合

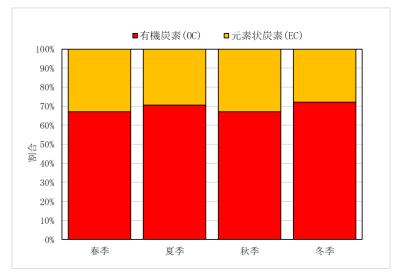


図6-4 季節ごとの炭素成分濃度測定結果及び割合

質量濃度の変動に対して、有機炭素(以下OC)及び元素状炭素(以下EC)どちらもほぼ同じような変動を示した。

OCとECの濃度を比較した結果、全ての測定日でOCの濃度が高くなった。

季節ごとの濃度では、OCは夏季と冬季が同程度に高く、春季と秋季が同程度に低かった。 また、ECはOCとは反対の傾向にあった。

OCとECの割合については、春季と秋季がEC32.9%で最も高く、次に夏季EC29.5%、冬季27.9%の順であった。ECは、自動車排気や石油燃焼の指標元素とされており、春季と秋季に最もコンビナートからの影響を受けている可能性が示唆された。

(6)無機元素成分

無機元素成分の測定結果は、図7-1から図7-4に示すとおりである。なお、図7-1には、質量濃度との変動を比較するために、当該結果を参考として再掲している。

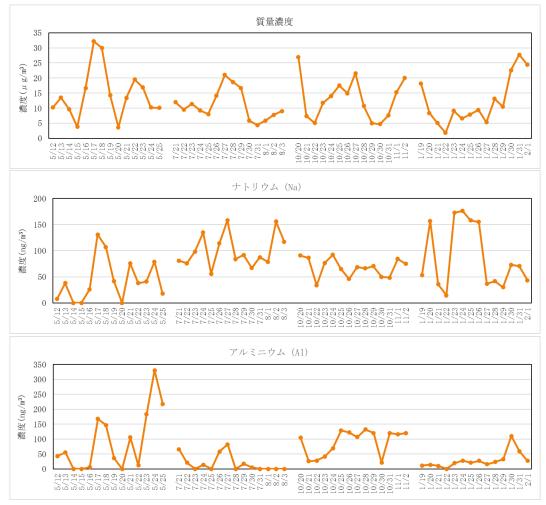


図7-1(1) 無機元素成分濃度測定結果

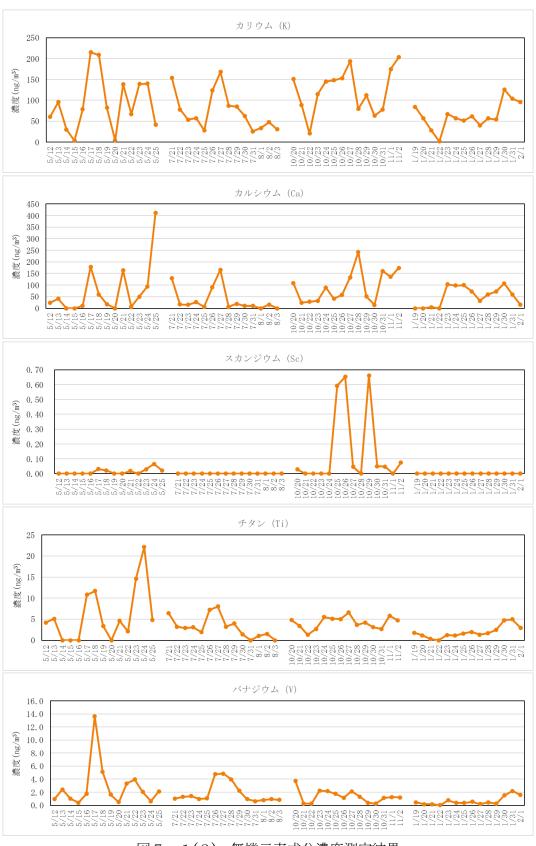


図7-1(2) 無機元素成分濃度測定結果

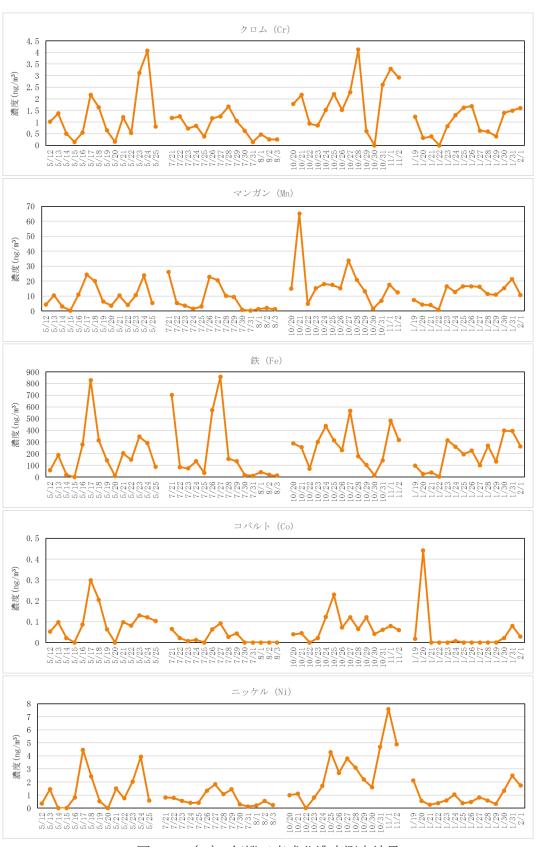


図7-1(3) 無機元素成分濃度測定結果

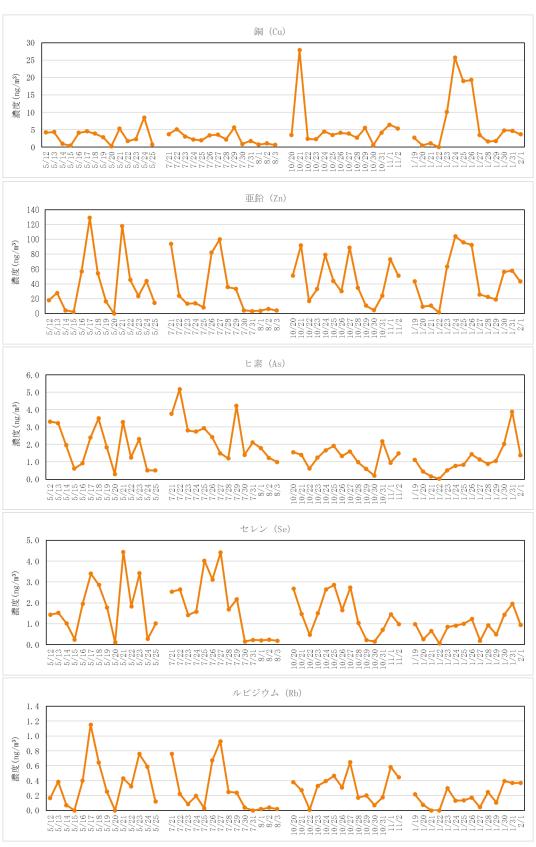


図7-1(4) 無機元素成分濃度測定結果

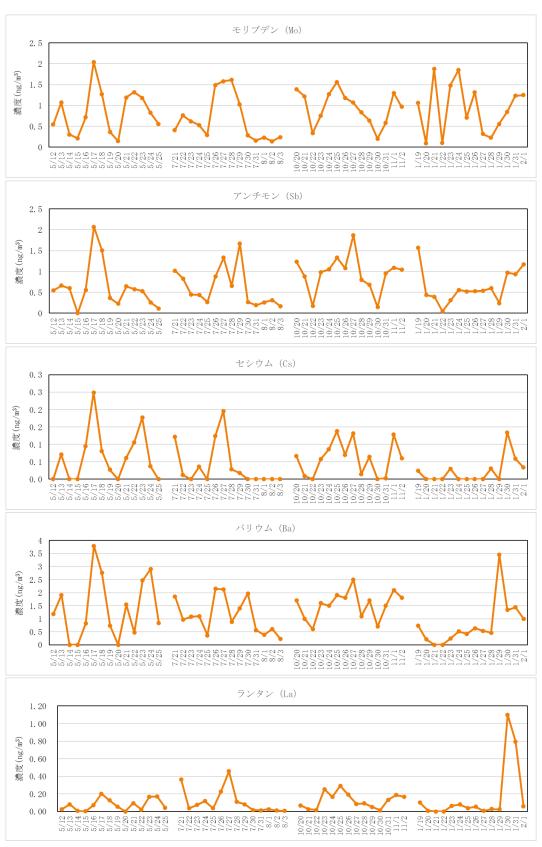


図7-1(5) 無機元素成分濃度測定結果

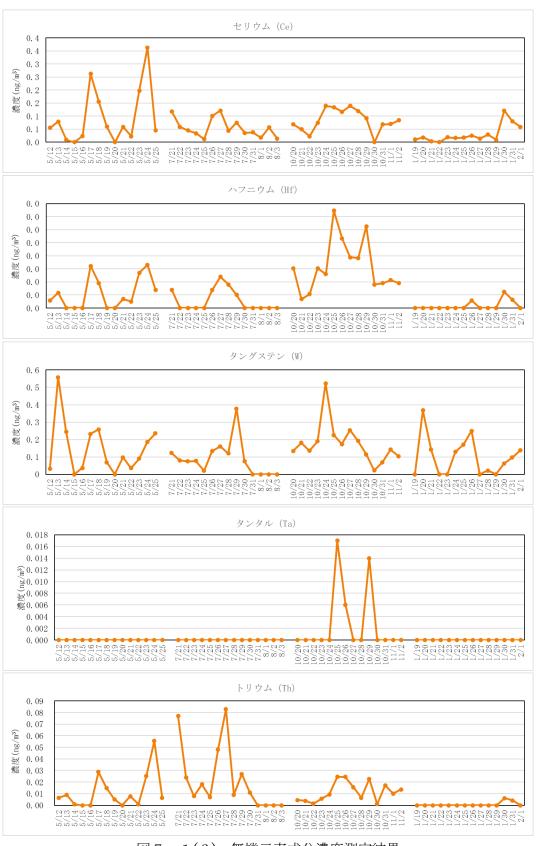


図7-1(6) 無機元素成分濃度測定結果

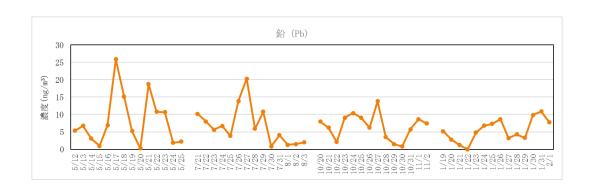


図7-1(7) 無機元素成分濃度測定結果

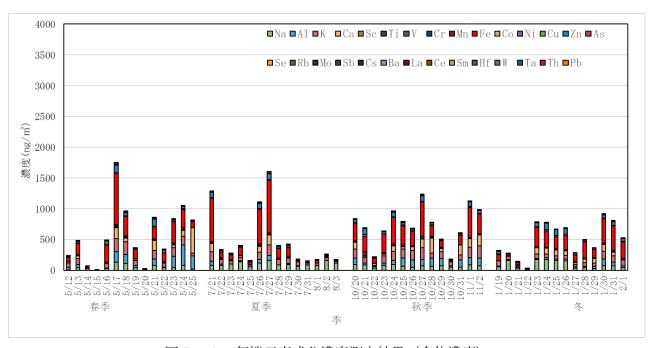
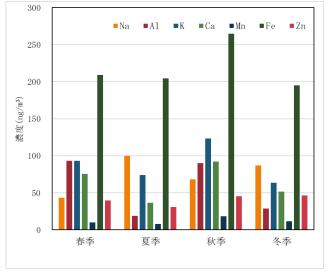
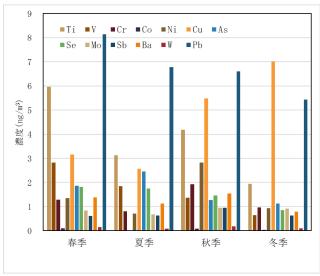




図7-2 無機元素成分濃度測定結果(全体濃度)

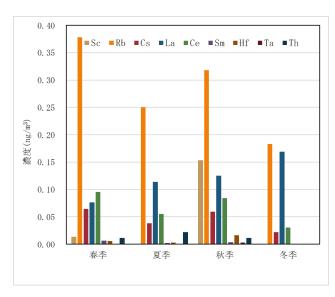


図7-3 季節ごとの無機元素成分濃度測定結果

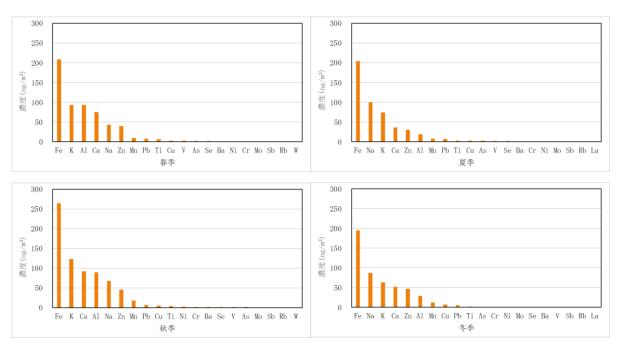


図7-4 季節ごとの無機元素成分濃度の順位(29成分のうち上位20成分について表示)

全体の濃度でみると、年間の測定日のうち、5月 17 日が最も高い濃度となり、質量濃度と一致する結果であった。鉄の割合が最も多いが、カリウム、カルシウム、アルミニウムなども高濃度であった。

季節ごとの濃度では、年間を通じてナトリウム、アルミニウム、カリウム、カルシウム、マンガン、鉄及び亜鉛の各成分は、変動はあるものの無機元素成分の中では多く存在していた。このうち鉄は、全ての季節で最も高い濃度を示したが、特に秋季が高濃度であった。

無機元素成分は、成分測定マニュアルによると、発生源の指標となる成分があり、上記の結果と関連付けると次のとおりとなる。

表3 各日で高濃度及び通年で高濃度を示した成分と発生源指標の関係

5 月 1 7 日	7 月 2 7 日	1 0 月 2 0 日	1 月 3 1 日	通年	成分名	海塩粒子	土壤	道路粉じん	自動車排気	ブレーキ粉じん	タイヤ粉じん	鉄鋼工業	石油燃焼	廃棄物焼却	野焼き
0	0	0	0	0	Na	0								0	
0		0		0	Al		0	0							
					Si										
\circ	\circ	\circ	\circ	\circ	K									0	\circ
\circ	0	0	0	\circ	Ca		0	0				\circ			
					Sc		0	0							
				\circ	Ti		0	0		0		0			
					V								0		
					Cr							0		0	
				0	Mn							0			
0	0	0	0	0	Fe			0		0		0			
					Co										
				_	Ni					_		0	0		
				0	Cu					0		0		0	
	0		0	0	Zn						0	0		0	
					As									0	
					Se										
					Rb										
					Mo Sb					0				0	
					Cs										
					Ba					0					
					La										
					Ce										
					Sm										
					Hf										
					W										
					Ta										
					Th										
					Pb										

表3では、各季節で最も無機元素濃度が高かった日で特に高濃度であった成分(測定期間中の上位5番以内に入ったもの)を示す。

無機元素濃度が春季及び年間の測定日で最も高かった5月17日に高濃度であった成分について、海塩粒子、土壌、道路粉じん、ブレーキ粉じん、鉄鋼業及び廃棄物焼却等の発生源指標と共通する成分が多くみられた。

夏季で最も高かった7月27日に高濃度であった成分について、海塩粒子、土壌、道路粉じん、ブレーキ粉じん、タイヤ粉じん、鉄鋼業及び廃棄物焼却等の発生源指標と共通する成分が多くみられた。

秋季で最も高かった 10 月 27 日に高濃度であった成分について、海塩粒子、土壌、道路粉じん、ブレーキ粉じん、鉄鋼業及び廃棄物焼却等の発生源指標と共通する成分が多くみられた。 冬季で最も高かった 1 月 30 日に高濃度であった成分について、海塩粒子、土壌、道路粉じん、ブレーキ粉じん、タイヤ粉じん、鉄鋼業及び廃棄物焼却等の発生源指標と共通する成分が多くみられた。

年間を通じてみると、成分濃度から、道路粉じん、ブレーキ粉じん、鉄鋼工業及び廃棄物焼 却が発生源として多く存在していると考えられる。

鉄鋼工業を示す指標のうち、鉄は年間を通じて濃度が高く、カリウム、ナトリウム及びカルシウムも比較的濃度が高かった。廃棄物焼却を示す指標では、カリウムは秋季に高い傾向を示し、ナトリウムは夏季に高い傾向を示した。

6 質量濃度の高濃度時の要因解析

今回の調査では、5月17日の質量濃度の日平均値32.2 μ g/m³となり、環境基準(短期基準:35 μ g/m³)を超過しなかったものの、年間の測定日の中で最も濃度が高かった。この日は、イオン成分が最も高く、炭素成分は2番目、無機成分は3番目に濃度が高かった。

高濃度時の気象状況を調べるため、空気塊の由来と移流経路を求める解析手法として用いられている、後方流跡線解析を行った。結果は図8に示すとおりである。

また、秋季及び冬季で最も質量濃度が高濃度となった、10月20日(全体の4番目)、1月31日(全体の3番目)についても後方流跡線解析を行った。その結果は図8に示すとおりである。

なお、夏季で最も高濃度となった7月27日については、環境基準値の6割程度の値であり、 特に高濃度とは言えないためここでは省略する。

5月17日6時起点(遡及時間:72時間) NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 17 May 23 GDAS Meteorological Data

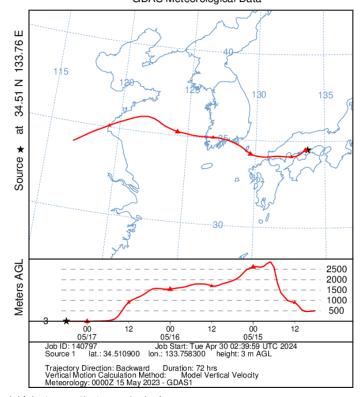
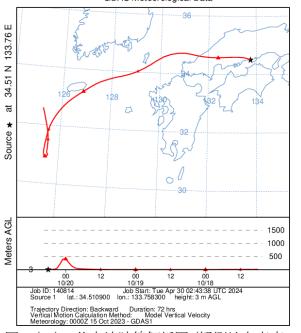



図8(1) 後方流跡線解析図(観測地点高度: 3 m NOAA HYSPLIT MODEL) (掲載元: ARL、HYSPLIT Trajectory Model Results)

5月17日の要因解析について、松江局到達3日前までにおいて大陸からの移流が見られる ものの、同日は高濃度であった無機元素成分が廃棄物焼却及び鉄鋼工業の発生源指標とほぼ共 通したことから、周辺事業場の影響と推測される。

風配図(図2)からも、当日は主に南西方向から比較的強い風が吹いていることが分かり、 大陸からの移流ではなく、コンビナート由来であることが推測される。

10月20日6時起点(遡及時間:72時間) NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 20 Oct 23 GDAS Meteorological Data

1月31日6時起点(遡及時間:72時間) NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 31 Jan 24 GDAS Meteorological Data

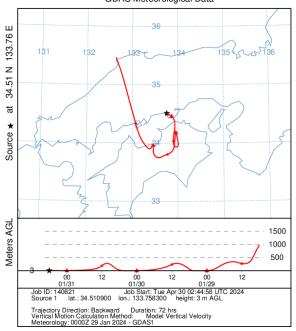


図8(2) 後方流跡線解析図(観測地点高度: 3 m NOAA HYSPLIT MODEL) (掲載元: ARL、HYSPLIT Trajectory Model Results)

10月20日については、東シナ海に空気塊が滞留しており、大陸からの移流はなかった。同日は、質量濃度中のイオン成分の絶対量が大きく、中でも硫酸イオンとアンモニウムイオンが多く検出されている。このことから硫酸アンモニウムが多く持ち込まれたことが高濃度の一因であると推測される。硫酸アンモニウム粒子は、工場や発電所等の人為発生源などから排出された二酸化硫黄が大気中で酸化され、空気中のアンモニアガスと反応することによって二次生成すると言われている。当日は、市内で二酸化硫黄濃度の高い測定局は確認されておらず、コンビナートで発生した硫酸アンモニウムが多く捕集されたものと推察する。

1月31日については、瀬戸内海に空気塊が滞留しており、大陸からの空気塊の移流はなかった。同日は、質量濃度中のイオン成分の絶対量が大きく、中でも硝酸イオンとアンモニウムイオンが多く検出されている。このことから硝酸アンモニウムが多く持ち込まれたことが高濃度の一因であると推測される。硝酸アンモニウム粒子は、自動車や固定発生源から排出された窒素酸化物が酸化され、アンモニアガスと反応することにより二次生成すると言われている。風配図(図2)から、当日は主に北東方向から比較的強い風が吹いていることが分かり、このことから、移動発生源からの寄与が、質量濃度を押し上げる一因であったと推測される。

7 まとめ

質量濃度について、四季の中で春季に最も高い濃度を記録し、調査期間中は全ての調査日に おいて環境基準を満足していた。質量濃度に対する各成分の割合は、全ての期間を通して、イ オン成分、炭素成分、無機元素成分の順であった。

イオン成分について、硫酸イオンが春季、夏季、秋季において最も高く、冬季では硝酸イオ

ンが最も高かった。次にアンモニウムイオンが春季から秋季では高かったが、冬季は、硫酸イオンがアンモニウムイオンを上回った。

炭素成分について、OCとECの濃度を比較した結果、全ての測定日でOCの濃度が高くなった。季節ごとの濃度では、OCは夏季と冬季が高かった。OCとECの割合については、春季と秋季が最も高くなり、コンビナートの強い影響が示唆された。

無機元素成分について、年間を通じてナトリウム、アルミニウム、カリウム、カルシウム、マンガン、鉄及び亜鉛の各成分は、季節で変動はあるものの成分の中では多く存在していた。このうち鉄は、全ての季節で最も高い濃度を示したが、特に秋季が高濃度であった。

発生源指標と成分濃度の関係から、年間を通じてみると、道路粉じん、ブレーキ粉じん、鉄 鋼工業及び廃棄物焼却が発生源として多く存在していると考えられる。

後方流跡線解析により、高濃度の要因は異なっていると推測することができた。